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Executive Summary

The Law School Admission Council (LSAC) is currently investigating the feasibility of implementing a
computer adaptive version of the Law School Admission Test (LSAT). The introduction of computer
adaptive tests (CATs) requires that new approaches be developed for the analysis of item properties,
including differential item functioning (DIF). DIF is said to occur when test takers from two demographic
groups (say, men and women) perform differently on an item even after they have been matched in terms of
overall ability. The presence of DIF may point to unintended sources of difficulty in the item (e.g., a math
item may require sports knowledge that is more common in men than in women). A significant technical
challenge in assessing DIF in CATs is the need to develop a method that will produce stable* results in small
samples: Even if the total number of test takers for a CAT is large, the number of responses to some items
may be very small.

Currently within the testing industry, the Mantel-Haenszel DIF analysis method is the most commonly
used to detect DIF for paper-and-pencil tests. In fact, this is the analysis used for the LSAT. A body of
statistical methods referred to as empirical Bayes (EB) methods are known to be capable of producing stable
statistical results with fewer test takers. The present study investigated the applicability to CAT data of a
DIF analysis method that involves an EB enhancement of the popular MH DIF analysis method.

The computerized LSAT test design assumed for this study was similar to that currently being evaluated
for a potential computerized LSAT. Here, rather than being presented with a single test item at a time, test
takers are presented with small groups of items, commonly referred to as testlets. The CAT pool for this
research consisted of 10 five-item testlets at each of three difficulty levels. The item parameters, which are
statistics that describe the various item characteristics such as item difficulty, were specified to resemble
those typically observed for the LSAT. Using these item-level statistics, responses to the test questions were
generated for simulated test takers. These simulations consisted of four conditions that vaired in terms of
group sample sizes and group ability distributions; both of these factors are known to affect the performance
of DIF methods. Sample sizes for the two test taker groups were either 1,000 or 3,000 (before application of
the CAT algorithm). The distribution of test taker ability for the two groups were either the same or differed
by one standard deviation.

The results showed the performance of the EB DIF approach to be very promising, even in extremely
small samples. The EB estimates tended to be closer to their target values than did the ordinary
Mantel-Haenszel (MH) statistics; the EB statistics were also more highly correlated with the true DIF values
than were the MH statistics.

Introduction

Because computer adaptive tests (CATs) typically involve smaller samples than paper-and-pencil tests for at
least some items, standard differential item functioning (DIF) techniques may not provide results with adequate
precision in this setting. Zwick, Thayer, and Lewis (1997, 1999, 2000) developed an empirical Bayes (EB) approach
to Mantel-Haenszel (MH) DIF analysis which yields more stable and interpretable results in small samples than
do conventional procedures and, therefore, seems well suited to adaptive testing conditions. The computations
involve the MH indexes and their standard errors, along with an assumed prior distribution for the true DIF
parameters. In an earlier study, the EB methods were extensively investigated through simulation study and were
applied to paper-and-pencil tests. The current report describes work that was conducted to investigate the
applicability of these methods to a large-scale computer adaptive admission test. The study, which is sponsored
by the Law School Admission Council (LSAC), is part of a research program (Pashley, 1997) that is intended to
investigate the feasibility of a computer adaptive Law School Admission Test (LSAT).

The study, which addressed the technical innovations necessary for application of the EB DIF method to
CATs, was based on a simulated test that involved a pool of adaptively administered five-item testlets. A
scaled score was computed for each test taker based on responses to five of these testlets; this score was used
as the matching variable for DIF analysis. Following this, the EB elaboration of the MH procedure was
applied. The resulting DIF statistics were compared to the true (generating) DIF.

We are grateful to Law School Admission Council for their sponsorship, to Joyce Wang for assistance in data analysis, and to Charlie
Lewis for consultation. Certain results of this study were presented at the annual meeting of the American Educational Research
Association, San Diego, 1998. Some general information on the empirical Bayes method in this report, including tabular material, has
appeared in slightly different form in publications by Zwick, Thayer, and Lewis (1997, 1999, 2000).

An estimation procedure is considered stable if the estimates tend to be close to their target values.
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This report addresses the role of Bayesian methods in psychometrics and educational research. It also
describes the EB DIF model and presents some of the issues that had to be considered in applying the EB
methods to CATs; describes the simulation study that was designed to investigate the CAT DIF procedures;
presents the analyses and results; and finally, provides a discussion of the findings and outlines our ideas for
future research.

Bayesian Methods in Psychometrics and Educational Research

Bayesian and empirical Bayes methods have found wide application in psychometrics and in educational
research. For example, in studies of test validity, a Bayesian or EB approach can yield estimated regression
coefficients that are more stable than are the usual least squares coefficients by pooling information from
multiple schools. This pooling is achieved by making an assumption about the prior distribution of the true
regression parameters across schools. To estimate the regression parameters for a particular school, this prior
is combined with the school-level regression model. The mean of the resulting posterior distribution1 is
typically taken as the point estimate of the regression parameter for that school. (An analogous approach can
be used to pool data from multiple years.) When the parameters of the prior are estimated from the data, a
method of this kind is called empirical Bayes. In a fully Bayesian approach, a distribution would be assumed
for the parameters of the prior.

A particularly lucid introduction to EB methods is given by Casella (1985); useful descriptions of EB
philosophies and estimation methods are given by Efron and Morris (1973) and Braun (1989). EB regression
models have been used in test validity studies, beginning with Rubin's important paper (1980) on the LSAT.
Braun, Jones, Rubin, and Thayer (1983) discussed a general model for EB regression, which has been applied
in several validity studies, such as Zwick (1993). An EB survival model developed by Braun and later
modified (Braun & Zwick, 1993) was used to study time to Ph.D. candidacy and time to degree by Zwick
and Braun (1988) and Zwick (1991). Charles Lewis and Dorothy Thayer have investigated EB methods for
test equating. Finally, many of the hierarchical models that are now popular in educational research can also
be characterized as Bayes or EB models. In EB DIF analysis, information is pooled across items to produce
DIF estimates that are more stable than the original DIF statistics.

EB Enhancement of Mantel-Haenszel DIF Analysis

The Mantel-Haenszel DIF analysis procedure of Holland and Thayer (1988) is a well-established method
for assessing DIF. A2x2xK table of test taker data is constructed based on item performance (right or
wrong), group membership (the focal group, which is of primary interest, or the reference group), and score on
an overall proficiency measure (with K levels). The MH (Mantel & Haenszel, 1959) odds ratio estimate is
then used to compare the two groups in terms of their odds of answering the item correctly, conditional on
the proficiency measure. The MH index of DIF, MH D-DIF, is obtained by multiplying the natural log of the
MH odds ratio estimate et by -2.35; the transformation of et places MH D-DIF on the ETS delta scale of
item difficulty (Holland & Thayer, 1985). By convention, MH D-DIF is defined so as to be negative when the
item is more difficult for members of the focal group than it is for comparable members of the reference
group. Phillips and Holland (1987) derived an estimated standard error for ln(ez ); their result proved to be
identical to that of Robins, Breslow, and Greenland (1986).

The results of an MH DIF analysis typically include the MH D-DIF index, along with its estimated
standard error. In making decisions about whether to discard items or flag them for review, however, testing
companies may rely instead on categorical ratings of the severity of DIF. Several testing companies have
adopted a system developed by ETS for categorizing the severity of DIF based on both the magnitude of the
MH D-DIF index and the statistical significance of the results (see Zieky, 1993). According to this
classification scheme, a "C" categorization, which represents moderate to large DIF, requires that the
absolute value of MH D-DIF be at least 1.5 and be significantly greater than 1 (at a = .05). A "B"
categorization, which indicates slight to moderate DIF, requires that MH D-DIF be significantly different
from zero (at a = .05) and that the absolute value of MH D-DIF be at least 1, but not large enough to satisfy
the requirements for a C item. Items that do not meet the requirements for either the B or the C categories
are labeled "A" items, which are considered to have negligible DIF. Items that fall in the C category are
subjected to further scrutiny and may be eliminated from tests. For most purposes, it is useful to
distinguish between negative DIF (DIF against the focal group, by convention) and positive DIF (DIF
against the reference group). This distinction yields a total of five DIF classifications: C-, B-, A, B+, and C+.
We make use of this five-way categorization in our work, though we sometimes refer for convenience to the
"A, B, and C categories."

In Bayesian analysis, "posterior" means "following the collection of data." 7
BESTCOPYAVAILABLE
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Zwick, Thayer, and Lewis (1997, 1999, 2000) developed an empirical Bayes (EB) approach to DIF analysis
and classification which yields more stable results in small samples than do conventional procedures and is
therefore likely to be advantageous in adaptive testing conditions. An assumption is made about the prior
distribution of DIF parameters across items. The prior is combined with the item's DIF results to estimate a
posterior distribution; the posterior mean serves as the EB point estimate of the DIF parameter for that item.

In addition to offering an alternative point estimate of DIF, the EB method provides a version of the A, B,
and C DIF classification system. Two related problems associated with the traditional classification approach
are that (1) when sample sizes are small, the DIF category is unstable and may vary substantially from one
test administration to another and (2) attaching an A, B, or C label to an item may convey the mistaken
notion that an item's DIF category is deterministic. The EB approach yields an estimate of the probability that
the true DIF for an item falls into the A, B, and C categories, based on an estimate of the posterior
distribution of DIF parameters. The estimated A, B, and C probabilities can be regarded as representing our
state of knowledge about the true DIF category for the item.

A possible advantage of the EB method of probabilistic DIF classification is that it may convey
information about the sampling variability of DIF results in a more comprehensible way than do the current
procedures. This alternative way of representing the variability of DIF findings lends itself well to graphical
display. Pie charts can be used effectively to represent the posterior probabilities associated with the A, B,
and C categories, as shown in the section, "Properties of EB Point Estimates." The EB methods can be
modified easily if the current rules used to assign items to categories are adjusted or if other
hypothesis-testing approaches are substituted for the Mantel-Haenszel procedure.

The EB approach to DIF analysis is related to three areas of previous research. A precursor to the method
was developed in the context of a simulation study of DIF methods for computer adaptive tests conducted
by Zwick, Thayer, and Wingersky (1994a, 1994b, 1995). Also, the variance component analysis of DIF
developed by Longford and his colleagues (Longford, 1995, chapter 5; Longford, Holland, & Thayer, 1993)
can be described as an EB approach. Finally, a Bayesian conceptualization of DIF was described by Holland
in ETS internal documents (January 27, 1987; February 11, 1987).

Modification of the EB DIF methods for the LSAT CAT context required that we address several issues.
First, we needed to take into account LSAC's interest in considering a CAT that was adaptive on the testlet
level, rather than the item level; this required us to design a simulation that would involve testlet-based CAT
administration. We then had to decide whether the matching of test takers for DIF analysis should be based
on a score that took the testlet structure into account. Another determination we had to make was what set
of items to use in estimating the prior distribution for the EB procedures, and whether our procedures for
estimating the parameters of the prior, which had been developed for nonadaptive tests, needed
modification for application to CATs. Finally, we had to determine whether the EB method, previously tested
on samples no smaller than 200 test takers for the reference group and 50 for the focal group, could be
applied successfully with even smaller samples. These issues are addressed in subsequent sections.

Statistical Model for the EB DIF Approach

The EB DIF method uses the observed values of MH D-DIF and SE (MH D-DIF), along with an assumed
prior distribution, to obtain the posterior distribution of true Mantel-Haenszel DIF parameters. The model
can be expressed as follows. (The notation changes from MH D-DIF to MH and from SE(MH D-DIF) to SE
(MH) to make the presentation less cumbersome.) We know that In(et MO has an asymptotic normal
distribution (Agresti, 1990). Therefore, it is reasonable to assume that

MH N(0 , (1)

where MH is the MH statistic for item i , 02, is the sampling variance of the MH statistic, and E (MH ,) = o.
represents the unknown parameter value corresponding to MH,. In our computations, we assume that the
sampling variance is known; that is, we set a2i equal to the observed estimate of the squared standard error,
SE2(MH1). The effect of ignoring the error associated with the estimation of SE(M1/1) was judged to be
minimal by Longford (1995); this was confirmed in analyses conducted by Zwick, Thayer, and Lewis
(1997; 1999).

We assume the following prior distribution for 0

0, N(y,T2) (2)

where ,u is the across-item mean of the DIF parameters Bi and eis the across-item variance. Estimation of
du and r2 is discussed in the section, "Estimation of u and r2 ."

8 BEST COPY AVAILABLE
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The posterior distribution of 0,, given the observed statistic, MH can be expressed as

1(0 IMH, )'f(MH io1)./(0,) (3)

Standard Bayesian calculations (see, e.g., Novick & Jackson, 1974) show that this distribution is normal
with mean and variance given by

and

where

E(0 IMI-11) = W,MH

Var(0 . I HI) =

2

- 2 2
Cr . +T

The means and variances for the model, prior, and posterior distributions are summarized in Table 1
The posterior mean is a shrinkage estimator of Mantel-Haenszel DIF, obtained by substituting estimates
of it and r2 for the corresponding parameters in equations 4-6 and setting 02 equal to SE2(MH1 ). The
larger the value of a2i, the more the EB estimation procedure "shrinks" the oll)served MH value toward
the prior mean (often zero or close to zero, as described in the section, Estimation of ,u and v2). On the
other hand, as a2i approaches zero, W, approaches 1, and the posterior mean approaches the observed
MH, value.

TABLE 1
Means and variances of key distributions

Distribution Mean Variance
Model
OH )

Prior

Posterior

f(0

0 (unknown)

WiMH + (1

2a (treated as known and
equal to SE2 (MH,))

s2

Note. W,
2 2CI +T

Obtaining the posterior probabilities associated with the five possible true DIF categories (C-, B-, A, B+,
and C+) is accomplished by considering a normal distribution with mean and variance equal to the estimates
of the posterior mean and variance (equations 4 and 5), respectively. The magnitude criteria presented in the
section, EB Enhancement of Mantel-Haenszel DIF Analysis, are then applied. For example, to estimate the
probability that the true DIF category is C-, the area under this normal density function, which is to the left
of -1.5, is obtained. (Since the goal of the procedure is to estimate the distribution of DIF parameters, the
statistical significance criteria for C- status, described in that section are not relevant here.)

In summary, the steps in the EB DIF procedure are as follows:

1. For the item of interest, estimate the values of MH, and SE(MH,). Assume the distribution of MH
is normal, with unknown mean 0 and known standard deviation SE(MHi).

2. Assume that the prior distribution for the true DIF parameter, 0 is normal. Use the observed mean
and variance of MH D-DIF statistics across an appropriately defined set of items (a test section or
form in the case of paper-and-pencil tests), along with an estimate of the across-item average of
SE2(MH, ), to estimate the parameters of the prior, (see Equation 7). The prior distribution is the
same for the entire set of items.

9
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3. Based on a and b, use standard Bayesian theory to estimate, for each item, the posterior distribution of the
true DIF parameter 0,, given the observed statistics. The posterior mean is the EB point estimate of DIF.

4. By applying the magnitude criteria associated with the DIF classifications to the posterior distribution,
estimate the probabilities that the true DIF for the item is in each of the five DIF categories.2

Estimation of Aland r2

An aspect of the EB procedure that needs further explanation is the determination of reasonable values
for the prior mean y and the prior variance r2. When MH DIF analyses are conducted using number-right
score as the matching variable, the MH DIF statistics are constrained to sum to approximately zero over the
set of items. Therefore, in some applications, setting /.4 equal to zero may be appropriate. However, we have
chosen to estimate y as well as efrom the current dataset; this less restrictive approach is appropriate under
a wider range of circumstances, including analyses in which the matching variable is external to the test
under investigation. Our estimates of ki andr2were

= Average (MH,) and i2 = Var(MH;) Average (SE (MH,)) (7)

where Var (MH,) is the observed across-item variance of the (MH ,) statistics.
In our initial work, we justified these estimators as follows: Suppose that MH, = 0, +e as in the

simplest version of the model of Longford, Holland, and Thayer (1993), where e is an error term with
E(e,10)= 0 and Var(ei 10) = 472,, i =1, 2, ... n. Suppose further that Cov( e, ,e,10,,O1)= 0 for ij. Then
E(MH,) = E (0 ,) = It and Var(MH,) = T2 4- C2, where a2 = E(cr2, ). These estimators can still be justified
in the case of adaptive testing, where it may be unreasonable to assume that the C2, values have a
common expectation. As described by Hoaglin, Mosteller, and Tukey (1991, p. 205), we can define cr2 as a 2 /n
and estimate u'as in the equal-variance case without losing much precision. We use the observed '

mean of the MH, statistics as our estimate of p. In estimating r2, we use Average (SE2 (MH,)) to estimate
a2and use the observed across-item variance of the MH, statistics as an estimate of Var(MH,). That is, in the
formulation in Equation 7, the across-item prior variance of the true DIF values, T.' is estimated by deflating
the estimated across-item variance of the DIF statistics by an amount equal to the average of the estimated
item-level sampling variances. Similar estimators have been independently proposed by Camilli and his
colleagues (e.g., Camilli & Penfield, 1997).

In the present study, we had to consider how to adapt our procedures for estimating At and r2 for the
CAT context. One determination we had to make was what set of items to use in estimating the prior
distribution for the EB procedures; this is not entirely clear in the context of a testlet-based CAT. After
considering several alternatives, we decided that the best way of preserving the advantages of the EB
analysis without introducing unwieldy computational procedures was to estimate the parameters of the
prior using data from all items in the pool.

In addition to deciding what set of items should be used in estimating the prior parameters, we needed
to determine whether our former procedure for estimating r2 would perform well in the CAT context, where
MH standard errors can vary considerably across items. In an unpublished simulation study, Dorothy
Thayer and Charles Lewis compared our usual estimate of T.' (from Equation 7) to the iteratively obtained
estimate of Longford (Longford, 1995; Longford, Holland, & Thayer, 1993) and to the approach developed by
Camilli and his colleagues (see Camilli & Penfield, 1997). The simulation results showed that the seemingly
unsophisticated estimate of Equation 7 performed best in a variety of circumstances. Estimation of y and r'
in the current study is discussed further in the section, Comparison ofpandi2 to Their Theoretical Values.

Validity Evidence

Zwick, Thayer, and Lewis (1997) conducted extensive validity studies of the EB DIF procedures, only a
few of which are described here. Using simulated data, root mean square residuals (RMSR5) were computed
to measure the deviation between DIF statistics and the true (generating) DIF, defined in the section, True
DIF values and True DIF categories for Simulation Items. As expected, the EB point estimates had smaller
RMSRs than did the ordinary MH D-DIF statistics; this advantage was greater in small samples. (See Casella,
1985, for a good intuitive explanation of the stability of EB estimates.) Application to actual test taker data
for two administrations of the same test form showed that the Time 1 EB estimates were better predictors of
the Time 2 MH, statistics (i.e., had smaller RMSRs) than were the Time 1 MI-11 statistics. Calibration plots

2
Using computations only slightly more complex than those above, the EB approach can also be used to estimate the probability that an item

will be classified as an A, B, or C in future administrations, based on the posterior predictive distribution (see Zwick, Thayer, & Lewis, 1997,
1999). The EB estimation procedures can also serve as the basis for a DIF detection procedure that uses loss functions (see Zwick, Thayer, &
Lewis, 2000).

1 0 BEST COPY AVAILABLE
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were used to examine the accuracy with which the EB procedure assigned items (probabilistically) to each
DIF category. Similar plots are used to study the accuracy of weather predictions. Within every simulation
condition in the study, one plot was constructed for each of the five DIF categories. The plot showed, for all
-items combined, the degree to which the EB-estimated probability of a particular DIF status (e.g., C-)
corresponded to the true DIF status. Samples of these calibration plots appear in Zwick, Thayer, and Lewis
(1997). Based on analysis of the plots, along with the RMSR evidence, we concluded that model fit was
adequate. Analyses of the accuracy of the EB estimation procedures in the current study appear in the
section, Analysis and Results.

Simulation Study

The simulation study was designed to capture properties of the populations and items involved in the
LSAT. In addition, the item administration algorithm, which was based on adaptive testlet administration,
was intended to be consistent with algorithms that are currently under consideration for the LSAT. The
simulated CAT consisted of a pool of nonoverlapping five-item testlets. The pool contained 10 testlets at each
of three difficulty levels, for a total of 30 testlets (comprising a total of 150 items). Five testlets were
adaptively administered to each test taker, based on the testlet number-correct score, as described in the
section, CAT Administration and Ability Estimation. This approach is similar to those currently under
consideration by LSAC (Pashley, 1997; Schnipke & Reese, 1999). In particular, our design resembles that used
in a simulation study by Reese, Schnipke, and Luebke (1999), which also involved the administration to each
test taker of five 5-item testlets and included three testlet difficulty levels.

We initially considered using a scoring procedure that took the testlet structure into account. We
ultimately decided, however, to use an item-response-theory based scale score for the entire item pool, as in
Zwick, Thayer, and Wingersky (1994a, 1995), because this seemed most consistent with available LSAC
scoring plans. The LOGIST computer program (Wingersky, Patrick, & Lord, 1988) was used to obtain an
ability estimate for each test taker, based on the 25 items received by that test taker. The ability estimates
were then transformed to scale scores expressed in the expected true score metric, as described in the section,
CAT Administration and Ability Estimation. These scale scores were used for matching test takers for the
DIF analysis. A summary of the simulation and analysis procedures appears in Table 2.

TABLE 2
Summary of simulation and analysis procedures

A. Create simulated test:
1. Generate item parameters a, b, c, and d = bR - bF for 150 items.
2. Estimate a, b, and c parameters using LOGIST.
3. Divide items into three groups of 50 based on estimated difficulty parameters.
4. Within difficulty level, randomly assign the 50 items to 10 five-item testlets.

B. Generate all test takers to be used in the entire simulation: 600,000 test takers for the reference
group and for each of the two focal groups (N(0,1) and N(-1,1)).

C. For each test taker in each simulation condition, do the following:
1. Administer the 150-item test.
2. Extract the responses to the 25 items that the test taker would have received under the

CAT algorithm.
3. Estimate abilities for the test taker based on the 25 responses and convert this estimate to the

expected true score metric.
D. Match test takers on expected true scores and perform DIF analyses:

1. Conduct MH DIF analyses for reference group compared to N(0,1) focal group (Condition 1)
and reference group compared to N(-1,1) focal group (Condition 2). Use 3,000 test takers per
group, which allows for 200 replications of each analysis. (3,000 x 200 = 600,000, the total
number of test takers generated for each group.)

2. Conduct another set of MH DIF analyses for reference group compared to N(0,1) focal group
(Condition 3) and reference group compared to N(-1,1) focal group (Condition 4). This time, use
1,000 test takers per group and 600 replications of each analysis. (1,000 x 600 = 600,000.)

3. Apply EB analyses to all MH results.

1 1
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Simulation Conditions

The main portion of the simulation included four conditions, which differed in terms of focal group
ability distribution (N(0, 1) or N(-1, 1)) 3 and sample size per group (3,000 or 1,000). Each of these factors is
detailed below; the four conditions are summarized in Table 3. To facilitate trouble-shooting and to allow
pilot tests of our ability and DIF estimation procedures, we conducted a series of preliminary simulations,
which are described in the section, Analysis of Data From Preliminary Simulations.

TABLE 3
Simulation conditions

Number
Focal Group Initial n
Distribution Per Group

1 N(0, 1) 3,000

2 N(-1, 1) 3,000

3 N(0, 1) 1,000

4 N(-1, 1) 1,000

Note. The notation N(x, y) refers to a normal distribution with mean x and y and variance y. In all cases,
the reference group distribution was N(0, 1).

Ability Distributions

The reference group had a standard normal ability distribution in all simulation conditions. In Conditions 1
and 3, the focal group ability distribution was standard normal (N(0, 1)); in Conditions 2 and 4, it was N(-1, 1).

Sample Sizes

Under the CAT algorithm used here, the item sample sizes vary across testlets (although they are similar
for testlets that share the same difficulty level). Pilot simulations were conducted to determine a value for
the initial number of test takers that would produce a useful range of testlet sample sizes. One of our goals
was to investigate the utility of the EB approach when group sample sizes fell below 100.

As noted earlier, we ultimately included two levels of sample size: one in which the initial sample
size for each group was 3,000 (Conditions 1 and 2) and one in which the initial sample size per group
was 1,000 (Conditions 3 and 4). The resulting item sample sizes are discussed in the section, Results of
Main Simulation.

Model and Parameters for Data Generation

The data were generated using the three-parameter logistic (3PL) model. The probability of a correct
response on item i in group G(G = R or F, denoting the reference or focal group) can be represented as

(1 )11 + exp[-(1.7a,(-b1G ))11-1 (8)

where is the test taker ability parameter, a, is the discrimination parameter for item i, Ci is the probability of
correct response to item i for a very low-ability test taker (which is constant across items), and biG is the item
difficulty in group G. The focal group difficulty, biF, is equal to b,R-d,. Hence, di is the difference between
reference and focal group difficulties.

Ln(a) and bR were assumed to have independent normal distributions across items: N(-.30, .10) and
N(0, 1.25), respectively. The means and variances of these distributions were determined by examining the
distributions of item parameter estimates based on two LSAT datasets. As in previous simulations (e.g.,
Zwick, Thayer, & Lewis, 1997; Zwick, Thayer, & Wingersky, 1994a), we used a fixed value of the guessing
parameter, c, for all items. The value that was selected.15was approximately equal to the average
estimated c value in the LSAT datasets. (The variances of the estimated c's in the two LSAT datasets were
.0007 and .0112, respectively; therefore, the use of a constant value does not seem problematic.)

3 The notation N(x, y) refers to a normal distribution with mean x and variance y.
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We modeled d as N(0, .15), which produced reasonable results in terms of true A, B, and C status; see the
following section. (LSAT DIF results were not available for use in modeling DIF.) The actual parameters for
the 150 items used in the simulation (ordered by testlet number) appear in the Appendix for the three testlet
difficulty levels; summary statistics (for the overall pool and for each testlet difficulty level) appear
in Table 4.

TABLE 4
Descriptive statistics for the true parameters of the 150 simulation items

Overall Easy Testlets Medium Testlets Hard Testlets
Mean Variance Mean Variance Mean Variance Mean Variance

ln(a) -.28 .11 -.34 .10 -.19 .13 -.32 .10
bR .07 1.25 -1.12 .35 .05 .08 1.27 .44
d .00 .14 -.06 .14 .06 .16 .01 .12
True DIF .05 .93 -.19 1.08 .27 1.21 .06 .42
Note. The generating distributions for item parameters were N(-.30, .10) for ln(a), N(0, 1.25) for bR, and
N(0, .15) for d. All c parameters were set equal to .15. True DIF status for the items was as follows:
69.3% A items, 19.3% B items, and 11.3% C items.

True DIF Values and True DIF Categories for Simulation Items

As noted in Zwick, Thayer, and Lewis (1997), a simple relation between item parameters and MH DIF
exists only.in the Rasch model, in which the MH D-DIF.statistic provides an estimate of 4ad under certain
assumptions. In the present study, as in that study, we defined true DIF as follows:

P
True DIF = -2.3551n IR

()/(,2,() f 4, (9)

where P,G() (G=R or F) is the item response function for group G, given by Equation 8, Q,G()= 1 PiG() and
fR ()is the reference group ability distribution. Pommerich, Spray, and Parshall (1995) proposed similar
indexes in other contexts; Zwick, Thayer, and Mazzeo (1997) used a related definition in a study of DIF in
polytomous items. Roughly speaking, this quantity can be viewed as the true MH value, unaffected by
sampling or measurement error.4 Empirical analyses, which included estimation of the regression of the
mean Mantel-Haenszel statistics (across replications) on the True DIF values from Equation 9, supported this
definition (Zwick, Thayer, & Lewis, 1997).

We defined an item's true DIF status in terms of its True DIF value, using only the magnitude criteria in
the section EB Enhancement of Mantel-Haenszel DIF Analysis. That is, items with True DIF values exceeding
1.5 in magnitude were considered to have a true status of C, items with True DIF magnitudes between 1 and
1.5 were considered to have a true status of B, and the remaining items had a true status of A. The True DIF
value and true DIF status for each of the 150 items in the simulation is given in the Appendix and
summarized in Table 4. Of the 150 items, 69.3% were categorized as A items, 19.3% as B items, and 11.3% as
C items.

Item Calibration and Development of Easy, Medium, and Hard Testlets

Though the generating item parameters are, of course, known in a simulation study, only estimates of
these parameters are available in actual applications. To make the simulation more realistic, we obtained
estimates of the item parameters to use in creating the E(asy), M(edium), and H(ard) testlets and in
estimating test taker ability levels (see next section.) We calibrated the 150 items under no-DIF conditions,
using 2,000 test takers from a standard normal ability distribution, with the LOGIST program (Wingersky,

4
For conditions in which the reference and focal group had different ability distributions, we previously considered (Zwick, Thayer, &

Lewis, 1997) an alternative definition of True DIF in which f,() was replaced by the mixture of reference and focal distributions, with
mixing proportions determined by the relatve sample sizes. We decided against this index because (1) it seemed undesirable for True
DIF to be defined so as to be dependent on the distributions and sample sizes for the two test taker groups and (2) substitution ofthe
alternative definition would have made little difference in that study. The mixture-based function would be evenmore unwieldy in the
CAT context, since the mixing proportions could potentially vary across items.
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Patrick, & Lord, 1988), as in Zwick, Thayer, and Wingersky (1994a, 1994b, 1995). We then allocated the items
to the E, M, and H testlets according to their estimated biR parameters. The items with the 50 lowest
estimated biR's were assigned to the E testlets, those with the 50 middle values were assigned to the M
testlets, and those with the 50 highest values were assigned to the H testlets. Within each difficulty level, the
50 items were randomly assigned to 10 five-item testlets.

CAT Administration and Ability Estimation

Each test taker received a total of five testlets, starting with a randomly selected M testlet. The following
rules governed which testlet the test taker received after the initial one:

1. If the number correct (on current testlet) is 0, 1, or 2, go down one step (or stay at E if already there)
2. If the number correct is 3, stay at current level
3. If the number correct is 4 or 5, go up one step (or stay at H if already there)
4. In each case, pick randomly from the testlets of the appropriate level, with the constraint that no

testlet be given to an test taker more than once.

After the CAT had been administered, a maximum likelihood estimate (MLE) of test taker ability was
estimated, using LOGIST, based on the 25 CAT items. (In the analyses of the preliminary dataset, described in
the section Analysis of Data From Preliminary Simulations, an ability estimate was also obtained based on all
150 items for comparison purposes). These ability estimates were then converted to scale scores as follows:

150

Scale score =1 13;() (10)

where 13,() is the estimated item response function for item i, evaluated at the MLE of ability. This scale
score is the expected true score for the entire pool of 150 items, as in Zwick, Thayer, and Wingersky (1994a;
1995). Scores of this type are also discussed by Stocking (1996). It was assumed that such scores would be
used for reporting LSAT results if CAT administration were implemented.

Number of Replications Per Condition

The number of replications for each simulation condition depended on the sample size for that
condition. For Conditions 1 and 2, for which the initial group sample sizes were 3,000, the number of
replications was set to 200. For Conditions 3 and 4, for which the group sample sizes were 1,000, the number
of replications was set to 600. This approach had the effect of roughly equalizing the standard errors of the
across-replication means of the DIF statistics.

DIF Analysis

For each replication, the MH and EB DIF approaches were then applied. Because of the sparseness of
tables, intervals of two units in the scale score metric were used in matching test takers. (Preliminary
analyses showed that two-unit intervals produced more accurate DIF estimates than did one-unit intervals.)
The mean and variance of the prior distribution were estimated using the MH results for all 150 items in the
pool. For each item (in each simulation condition), the results consisted of EB point estimates of DIF, as well
as the estimated probabilities of C-, B-, A, B+, and C+ status.

Analysis and Results

The description of analyses and results is organized into three main parts. First, the analysis of data from
our preliminary simulations is presented. Then, the analysis of the properties of the EB point estimates,
based on the main simulation, is described. Finally, the application of the probabilistic DIF classification
analyses is detailed.

Analysis of Data From Preliminary Simulations

Preliminary simulations were conducted to check on the simulation procedures, the CAT algorithm, and the
estimation routines; to investigate the relation between initial sample size and item sample size; and to conduct
other analyses that would be impractical to apply to the data from the main simulation. The next two sections
describe two main components of the preliminary analyses: an investigation of the properties ofthe CAT-based
ability estimates and an examination of the performance of the EB DIF procedures in the no-DIF case.
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Properties of Ability Estimates

To check on our ability estimation procedures, we first generated responses to all 150 items for 5,000 test
takers from each of four populations: the reference group, which was standard normal (with no DIF, since
the item difficulties for this group are the biR values), a standard normal focal group with DIF (as specified
by the biR and di values given in the Appendix and summarized in Table 4), a N(-1, 1) focal group with no
DIF, and a N(-1, 1) focal group with DIF.

The 25 items that each test taker would have received under the CAT algorithm were identified.
LOGIST was then used to obtain, for each test taker, a CAT-based ability estimate, and, for comparison
purposes, an ability estimate based on all 150 items. Residuals were obtained by subtracting the true ability
values from the estimates. The distributions of the residuals were summarized using the median and the
interquartile range (more appropriate than the mean and variance since LOGIST sets infinite or poorly
determined ability estimates equal to arbitrary extreme values). Correlations between the ability estimates
and true ability were also obtained. Results are given in Table 5, along with descriptive information about
the true abilities.

TABLE 5
Properties of true and estimated abilities from preliminary simulation

Reference
N(0,1)

Focal N(0, 1)
DIF present

Focal N(-1, 1)
DIF absent

Focal N(-1, 1)
DIF present

True ability
Mean -.012 -.007 -1.004 -1.010
SD .987 1.006 1.005 1.001

Residual for 150-item estimate
Median .021 .027 .021 .015
IQR .252 .267 .315 .327

Residual for CAT estimate
Median .033 .050 .024 .027
IQR .522 .577 .615 .687

Correlations
150-item with True ability .979 .979 .959 .959
CAT with True ability .919 .915 .888 .872
150-item with CAT .940 .934 .919 .910

Note. The sample size was 5,000 for each of the 4 groups. IQR is interquartile range. Residuals are
computed as Ability Estimate True Ability.

The first two rows of the table show that the means and standard deviations of the true abilities were
very close to their nominal values, supporting the accuracy of our data generation procedures. For the
nonadaptive ability estimate, which was based on responses to all 150 items, the median residuals ranged from
.015 to .027; in the CAT, the corresponding range was from .024 to .050. As expected, the median average
residuals tended to be farther from zero for the CAT than for the 150-item test. In three of four comparisons,
the departure from zero was greater when DIF was present than when it was not. The interquartile ranges
(IQRs) show that the residuals were more variable for the CAT than for the 150-item test, more variable in
the N(-1, 1) groups than the standard normal groups, and more variable when DIF was present. These
findings are reasonable in light of the fact that short tests, DIF, and a poor match between group ability and
test difficulty (as occurs in the N(-1, 1) groups) all tend to detract from measurement precision.

Correlations of the 150-item ability estimates with true abilities ranged from .96 to .98; for the CAT,
these correlations ranged from .87 to .92. The intercorrelation between the two sets of estimated abilities
ranged from .91 to .94. As in the case of the residuals, the obtained correlations were affected by the test length
(confounded here with adaptive status), the location of the ability distribution, and to some degree, the
presence of DIF.

Properties of EB DIF Estimates in the No-DIF Case

To check on our procedures and to determine the performance of the EB method in the null case, we
created a data set in which DIF was absent. The abilities for both test taker groups were drawn from a standard
normal distribution, and the reference group item difficulties were used in generating the data for bothgroups
(i.e., the labeling of which group is the reference group and which is the focal group is entirely arbitrary). Both
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a large-sample case, with 3,000 test takers per group and 200 replications, and a small-sample case, with 1,000
test takers per group and 600 replications, were considered. (Item sample sizes, of course, were smaller. The
section, Results of Main Simulation, gives details on item sample sizes in the main simulation; results for the
two groups in this preliminary simulation were similar to the reference group results in Table 7.)

Since the reference and focal groups had identical item response functions in this dataset, the True DIF
value for each item was zero. How close were the EB DIF values to this target, and how did their accuracy
compare to that of the ordinary MH statistics? We compared the EB point estimates of DIF to the standard
MH statistics using root mean square residuals (RMSRs), defined for each item as follows:

Nrep

RA4SR=
A Nrep(EstDIF(j)True DIF)2 ,

where j indexes replications, Nrep is the number of replications, Est DIF(j) is either the MH, statistic or the EB
posterior mean from the jth replication, and True DIF is the appropriate value from Equation 9; in this case, zero.
The RMSR represents the average departure, in the MH metric, of the DIF estimate from the True DIF value. If these
True DIF values are regarded as the estimands for the DIF statistics, then these RMSR values give estimates of the
mean squared error (the average distance between the parameter estimate and the parameters) for the DIF statistics.

Table 6 summarizes the results for the 150 items in the two sample size conditions. The table gives, for
each condition, the 25th, 50th, and 75th percentiles of the distribution of RMSR values across the 150 items.
The results are truly striking: The median RMSR for the MH method was roughly 10 times the median
RMSR for the EB approach in both sample-size conditions. The EB DIF statistic departed from its target
value of zero by an average of about .03 in the large-sample case and .07 in the small-sample case; the
corresponding values for the MH were .37 and .68. The performance of the EB in the small-sample case was
far superior to the performance of the MH in the large-sample case. Overall, the results for the no-DIF
conditions suggest that the EB approach is useful for minimizing Type I errors in DIF analysis.

TABLE 6
Distribution of RMSRs across the 150 items for the no-DIF case from preliminary simulation

Initial Group n = 1,000 Initial Group n = 3,000
EB MH EB MH

25th percentile .068 .543 .031 .298
Median .072 .684 .034 .365
75th percentile .078 .769 .037 .417
Note. The number of replications was 600 in the small-sample condition and 200 in the large-sample
condition. Ability distributions for both groups were N(0, 1).

Results of Main Simulation

The main simulation explored the properties of the EB DIF point estimates and the probabilistic DIF
classification procedures using data from the four simulation conditions summarized in Table 3. When the
initial sample size was 3,000 (Conditions 1 and 2), item-level sample sizes (within a group) ranged from 86 to
842; for the initial sample size of 1,000 (Conditions 3 and 4), the range was from 16 to 307. Table 7 provides
data on the realized sample sizes for each testlet difficulty level. (The CAT algorithm used in our study
implies that item sample sizes within a difficulty level will be similar.) The table includes two test taker
groupsthe reference group, which has a standard normal distribution, and the focal group with a N(-1, 1)
distribution. Sample sizes for the focal group with a standard normal distribution were similar to those of
the reference group. In all cases, the effective sample size may be smaller, since the MH procedure
automatically excludes cases for which no match is available in the other test taker group.

s In this unrealistic condition in which DIF was entirely absent and the true value ofe was therefore equal to zero, our estimator of
etook on a negative value in roughly half the replications, as is expected under this type of variance estimation procedure (Hoaglin,
Mosteller, & Tukey, 1991, p. 210). We set these negative estimates to zero as is typically done when negative variance estimates are
obtained in other contexts. We have never obtained a negative estimate of 12 in any of our analyses of actual test taker data.
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TABLE 7
Test let sample sizes for simulation study

Large n Small n
Focal N(0, 1):
Condition 1

Focal N(-1, 1):
Condition 2

Focal N(0, 1):
Condition 3

Focal N(-1, 1):
Condition 4

Easy testlets
minimum 363 674 105 208
mean 424.9 765.1 141.6 255.0
maximum 494 842 191 307

Medium testlets
minimum 653 544 194 160
mean 725.7 615.4 241.9 205.1
maximum 797 693 297 264

Hard testlets
minimum 287 86 80 16
mean 349.4 119.5 116.5 39.8
maximum 406 158 151 67

Note. Each difficulty level contains 10 testlets. The results above are summaries over testlets and
replications (600 replications in the small-sample condition; 200 replications in the large-sample
condition). The reference group ability distribution was N(0, 1) in all conditions.

The smallest sample sizes occurred in the hard testlets, in which the mean item difficulty was quite
high (1.27; see Table 4) relative to the abilities of the test takers, particularly for the focal group with a
N(-1, 1) distribution.

Comparison of 1.1 and 12 to Their Theoretical Values

If the True DIF values of Equation 9 are regarded as the 0 values, then the mean and variance of these
quantities across items can reasonably be regarded as the target values for it' and 12, respectively. The mean
and variance across the 150 True DIF values (see Table 4) were 0.05 and 0.93, respectively. The distributions of

and e are summarized in Table 8 for the four simulation conditions. The median values of both it ande
are somewhat higher than their target values, a finding that is not consistent with the results of our earlier
EB DIF studies. (As noted in the section, Estimation of It and e, supplementary simulation work had shown
that our procedure for estimating eproduced better results than did competing approaches.) We plan to
continue exploring ways to improve our procedures for estimating the parameters of the prior distribution.
For example, a reviewer suggested that poorly determined MH, statistics be trimmed before estimating e, a
procedure that might also improve the estimation of kt. Despite the apparent tendency to overestimate y and
12, the EB point estimates performed well, as described in the subsequent sections.

TABLE 8
Distribution of it and 12 over replications

Simulation Condition it
;.12

Focal Sample 25th 75th 25th 75th
Condition Group Size Percentile Median Percentile Percentile Median Percentile

1 N(0, 1) Large .07 .08 .09 1.08 1.12 1.17
2 N(-1, 1) Large .06 .08 .09 .94 .99 1.06
3 N(0, 1) Small .06 .08 .10 1.08 1.18 1.29
4 N(-1, 1) Small .05 .08 .11 .94 1.07 1.21

Note. The number of replications was 200 for Conditions 1 and 2 and 600 for Conditions 3 and 4. The
mean and variance of True DIF values (Equation 9) are .05 and .93.

Properties of EB Point Estimates

Two analyses of the properties of the EB point estimates are reported for each of the four simulation
conditions. The next section describes the computation of RMSRs for both EB and MH estimates; these
indexes provide a measure of the average deviation of the DIF estimate from the True DIF. The section
following that presents the correlations between the DIF estimates and True DIF values.
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Coinparison of RMSRs for MH D-DIF and for EB estimates of DIF. As in the preliminary simulation, we
compared the EB point estimates of DIF to the MHi statistics using root mean square residuals, defined in
Equation 11. Table 9 summarizes the results for the 150 items in the four simulation conditions listed in
Table 3. Table 9 gives, for each condition, the 25th, 50th, and 75th percentiles of the distribution of RMSR
values across the 150 items, as well as the number of RMSR values exceeding one. In interpreting the RMSR
values, it is useful to keep in mind that they are in the MH metric, and that the standard deviation of the
True DIF values is .96.

TABLE 9
RMSR results for EB and MH DIF statistics in simulation study

Large n Small n
Focal N(0, 1): Focal N(-1, 1): Focal N(0, 1): Focal N(-1, 1):
Condition 1 Condition 2 Condition 3 Condition 4

EB MH EB MH EB MH EB MH
25th percentile .284 .317 .302 .322 .460 .565 .464 .585
Median .341 .390 .361 .366 .509 .713 .517 .641
75th percentile .380 .444 .442 .594 .542 .787 .560 1.19
Number > 1 0 1 0 1 1 7 2 51
Note. Each RMSR summarizes results across replications. The results above are summaries over the 150
items. The reference group ability distribution was N(0, 1) in all conditions.

In the two small-n simulation conditions, the RMSR tended to be substantially smaller for the EB
estimate than for MH D-DIF. The difference in median RMSR values was larger in the ca-se in which both
reference and focal ability distributions were standard normal. Here, the median RMSR for the EB was .51,
compared to .71 for the MH. An even more striking finding was the difference in the number of RMSR
values (out of 150) that exceeded one in the small-n conditions. When both reference and focal distributions
were standard normal, the EB had one such RMSR value, compared to seven for the MH. When the focal group
ability distribution was N(-1, 1), the EB had two RMSR values exceeding one, compared to 51 for the MH.

The small-n results were also examined separately for easy, medium, and hard items. As shown in Table
7, the smallest sample sizes occurred for the 50 hard items in Condition 4, when the focal group ability
distribution was N(-1, 1). Here, reference group sample sizes ranged from 80 to 151 with a mean of 117; focal
group sample sizes ranged from 16 to 67 with a mean of 40. These sample sizes are substantially smaller than
is ordinarily considered acceptable for application of the MH procedure. Table 10 summarizes the RMSR
results for these items. The median RMSR for the EB method for these items was .53, compared to 1.25 for
the MH. The 25th and 75th percentiles for EB were .51 and .56; the corresponding values for the MH were
1.19 and 1.32. It is interesting to note that, in a subset of the results (not shown) for which the MH RMSR had
a median of .53 (medium items, Condition 3), the sample sizes averaged about 240 per group. Roughly
speaking then, the EB procedure achieved the same stability for samples averaging 117 and 40 reference and
focal group members, respectively, as did the MH for samples averaging 240 per group. Table 10 also shows
that, for the hard items in Condition 4, all 50 RMSRs for the MH procedure were greater than one, while only
two of the 50 values exceeded one for the EB method.

TABLE 10
Distribution of RMSRs for the 50 hard items in condition 4 (small n, N(-1, 1) focal group)

EB MH
25th percentile .514 1.190
Median .532 1.252
75th percentile .558 1.322
Number > 1 2 50
Note. The range of item sample sizes across the 50 items and 600 replications was from 80 to 151, with a
mean of 117 for the reference group and from 16 to 67, with a mean of 40 for the focal group.

In the large-n conditions, the advantage of the EB estimates was greatly reduced. The lesser difference
between the two DIF estimates is to be expected, since the MH standard errors are small when samples are
large, causing the EB DIF estimate to be close to the MH values (see Equations 4 and 6).
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The RMSR results are graphically displayed in Figures 1-3 for the easy, medium, and hard testlets,
respectively. The plots show, for each of the 10 testlets at each difficulty level, the degree to which the
median RMSR (across testlet items) for the MH exceeds the median RMSR for the EB method. The
superiority of the EB approach is obvious in all three plots and is particularly notable in the hard testlets,
especially in Condition 4 (as reflected in Table 10).

1.00 -

0.75

0.50

025

0.00

.0.25
0 2 3 4

Testlet

7 9 10

FIGURE 1. Easy testletsdifference in median RMSR: MH-EB

1.00 -

0.75 -

a
0 50 -

0 25
2: 2

0.03

-025

-

5 6 7

Testiet

1 0

FIGURE 2. Medium testletsdifference in median RMSR: MH-EB

19

Condition 1

CondlUon

a Condition 3
C0401110n 4

Zoro Lino

- - - Condibon 1

Condition 2

Condnion 3

Condition

Zero Line

BEST COPY AVAILABLE



15

1.00

0.75

0.00 -

0.25

----- ° ----- cr

2 3 5 6

Testlet

FIGURE 3. Hard testletsdifference in median RMSR: MH-EB

- - Condition 1

Condition 2

Condition 3

o-- Condition 4

The generally smaller RMSR values for the EB estimates are consistent with theory. According to the
Stein effect (named for statistician Charles Stein), "estimates can be improved by using information from all
coordinates [in this case, the MH D-DIF values for all items] in estimating each coordinate" (Casella, 1985, p.
84). Such estimates have smaller mean squared error than their non-Bayesian counterparts. They are not,
however, unbiased; in fact, the bias of these estimates is greatest for the extreme parameter values. The mean
squared error of an estimator can be decomposed into two additive components: a variance term and a
squared bias term. Our simulation design allows the estimation of each of these components. That is, the
mean squared residuals (i.e., the squared RMSR values) can be decomposed into two additive terms: a
variance term, estimated by the variability of the within-replication DIF estimates around their mean and a
(squared) bias term, which is the squared difference between this mean and the True DIF value.

An analysis of the bias of the EB DIF statistics was conducted (as in Zwick, Thayer, & Lewis, 1997,1999,
2000); results are displayed in Table 11. The 25th, 50th, and 75th percentiles of the bias values were similar
for EB and MH in the large-sample conditions, but were larger for the EB method in the small-sample
conditions, particularly when the reference and focal groups had different ability distribution. Surprisingly,
in Conditions 1-3, the maximum MH bias was larger than the maximum EB bias; only in Condition 4 was
the maximum bias value greater for the EB method.
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TABLE 11
Bias and variance of DIF statistics for the 150 simulation items

Large n Small n
Focal N(0, 1):
Condition 1

Focal N(-1, 1):
Condition 2

Focal N(0, 1):
Condition 3

Focal N(-1, 1):
Condition 4

EB MH EB MH EB MH EB MH
Variance

Minimum .050 .057 .065 .078 .144 .214 .155 .271
25th percentile .079 .095 .084 .103 .195 .316 .191 .335
Median .108 .141 .100 .127 .238 .498 .210 .402
75th percentile .127 .166 .182 .339 .259 .592 .242 1.402
Maximum .178 .352 .244 .575 .293 1.446 .296 2.347

Squared bias
Minimum .000 .000 .000 .000 .000 .000 .000 .000
25th percentile .000 .001 .001 .000 .001 .001 .004 .000
Median .001 .003 .003 .001 .007 .004 .027 .002
75th percentile .019 .015 .016 .011 .035 .018 .088 .013
Maximum .572 1.130 .325 .560 1.005 1.292 1.579 .697

Note. The variance and squared bias terms sum to the mean square residual (i.e., the squared RMSR).
The reference group ability distribution was N(0, 1) in all conditions.

A possible concern about the EB method is that the extreme items tend to be most affected by the
biasedness of the EB estimates. While this is a justifiable concern, the magnitude of the bias problem appears
to be quite small in the present study. Several items for which EB bias was large still had smaller RMSR values
for EB than for MH, showing that the EB statistics were, on the average, closer to their target values than the
MH statistics. For example, the largest squared bias value for the EB approach, 1.58, occurred in Condition 4
for an item that had a True DIF value of 2.4. The EB variance value was .16, resulting in an RMSR value of
1.32. The MH statistic, by contrast, had a squared bias value of .69 and a variance term of 2.34, resulting in an
RMSR value of 1.74. For only a very few items (6 in Condition 4, 2 in Condition 3, and none in Conditions 1
and 2) did the EB bias lead to EB RMSR values that exceeded MH RMSR values by more than 0.1.

Correlations of DIF estimates with True DIF values. As another check on the quality of the EB point estimates,
the Pearson correlations between the EB estimates and the True DIF values were computed and compared to
the correlations between the MH statistics and True DIF. The correlations between the two DIF estimates were
also obtained. Correlations were computed for each replication within each simulation condition. Table 12
gives, for each condition the median correlation for the set of all replications within that condition. (Variability
across replications was very small.) As expected, the correlations with True DIF were smaller for Conditions 3
and 4, the small-n conditions, than for Conditions 1 and 2. In each of the four conditions, the median
correlation with True DIF was larger for the EB estimate than for the MH estimate. However, the differences
were small in Conditions 1-3. In Condition 4, the small-n condition with the N(-1, 1) focal group, the EB
estimate had a median correlation of .81 with True DIF, compared to only .75 for the MH statistic.

TABLE 12
Median correlations between DIF estimates and true DIF

Large n Small n

Focal N(0, 1):
Condition 1

Focal N(-1, 1):
Condition 2

Focal N(0, 1):
Condition 3

Focal N(-1, 1):
Condition 4

MH with True DIF .932 .901 .830 .748

EB with True DIF .934 .918 .837 .814

EB with MH .999
0

.994 .991 .953

Note. The entries are the median correlations across replications. The number of replications was 200
for Conditions 1 and 2 and 600 for Conditions 3 and 4. The reference group ability distribution was
N(0, 1) in all conditions.
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Probabilistic DIF classification

Figure 4 gives a sample display of the results of a probabilistic DIF analysis. The plot is based on one
replication for Item 138, which has a True DIF value of .43 and a true DIF status of A. The reference group
sample size is 101; the focal group n is only 23. Given its MH value of 4.71, with a standard error of 2.22, this
item would be classified as a C+ item using conventional rules. However, as the pie chart shows, the
probabilistic approach produced the conclusion that there is about a 65% chance that the true status is A, a
20% chance that it is B+, and only a 14% chance that it is C+. (The estimated probabilities of B- and C- status
sum to about 1%.) The EB point estimate of DIF for this item is .69, much closer to the True DIF value than is
the MH estimate. This display illustrates the potential utility of the probabilistic DIF approach.

Reference group : N(0,I) N = 101
Focal group : N(-1,1) N = 23

MH &DIE . 4.71 , SE(MH &DIE). 2.22 DIE Status C+

Posterior Mean (ER DIF Value) = 0.69 , Posterior Standard Deviation = 0.76

Percent It+ = 19.8 --Ile

Estimate of True DIF Status

Percent C. = 0.2

Percent A = 60.5

FIGURE 4. DIF analysis of item 138 on replication 31 small sample size,
true classification A

To assess the accuracy of the probabilistic DIF classification methodology, we made use of calibration
plots, which are illustrated in Figures 5-9. The calibration of prediction models was introduced in
meteorological journals (e.g., Murphy & Epstein, 1967) and was subsequently addressed in the statistical
literature (e.g., Dawid, 1982). The classic example is that of a weather forecaster who wishes to determine the
accuracy of his predictions about the occurrence of rain. This can be done by considering the days on which
the probability of rain was stated to be approximately equal to a certain value (say, 5%) and then
determining, post hoc, on what percent of those days it did in fact rain. Ideally, that observed percent would
be close to 5%. (See Gelman, Carlin, Stern, & Rubin, 1995, Chapter 6, for a description of similar types of
model checking.)
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Percents of
Replica dons from
Tnse C. Items

Percents Estimated with EB DIP Method

FIGURE 5. Accuracy of EB probabilistic DIF classification for C- category,
condition 4

Percents of
Reptientions from
True B. Items

100 -

90 -

BO

70

60 -

50

40

30

20

10

51400
over 450

10 20 30 40 50 50 70 50
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FIGURE 6. Accuracy of EB probabilistic DIF classification for B- category,
condition 4
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100 -

Percents of 90 -
Replications front
True A Items

ao

70 -

BO

SO -

40

30

20
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0.50 replicatson

51-200 MBOMOU

201.450 replictions

wor 050 repltations

2 0 9 0 10 S 0 BO 7 o ao 9 0 800

Percents Estimated with EB DIF Method

FIGURE 7. Accuracy of EB probabilistic DIF classification for A category,
condition 4

Percents of
Replkations from
True B Items

0-50 replications

over 450 raplIcsilans
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Percents Estimated with EB DIF Method

FIGURE 8. Accuracy of EB probabilistic DIF classification for B+ category,
condition 4
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Percents of
Replications from
True C+ Items

100

go

so

70

BO

20 -

tO -

6,-200

201.450

10 20 30 17 50 BO 70 00 BO 100

Percents Estimated with ER.DIF Method

FIGURE 9. Accuracy of EB probabilistic DIF classification for C+ category,
condition 4

In the present context, we wanted to examine the accuracy with which the EB procedure assigns items
(probabilistically) to the A, B, and C DIF categories. We created a total of 20 calibration plots (4 simulation
conditions x 5 DIF categories). For each plot, the data consist of the DIF results for the all replications of
every itema total of 200 x 150 = 30,000 observations in Conditions 1 and 2, and 600 x 150 = 90,000
observations in Conditions 3 and 4. Suppose we are interested in the C- category. Each replication can be
classified according to the "percent C-" assigned using the EB DIF method; these values are plotted along the
x-axis, grouped into intervals with a width of five percentage points. The values plotted along the y-axis
correspond to the percentage of replications that come from an item with a true DIF status of C-. For
example, suppose there are 1,000 replications for which the "percent C-" (based on the EB DIF method) is
approximately 5%. If our method worked perfectly, we would find that 5% of these 1,000 replications (i.e., 50
of them) came from items with a true status of C-. (Obviously, this type of calibration can be applied only in
simulations, where the true DIF status of the item is known.)

The five plots for Condition 4 are given in Figures 5-9 to illustrate the calibration technique. Condition 4
would be expected to produce the least favorable results because sample size is small and because the
reference and focal group ability distributions are one standard deviation apart, a circumstance that is know
to degrade the performance of DIF methods. Nevertheless, the results for the A category generally looked
quite good; the "A" results for the other conditions were even better. (As the plots show, some points are
poorly determined because they are based on a small number of replications.) The C- results also looked
good; the C+ results, while still acceptable, did show some departures from the 45-degree line for x-values
less than 60. Surprisingly, the C+ plots for the small-sample conditions (3 and 4) looked better than those for
the large-sample conditions (1 and 2). The most disappointing results occurred in the B- and B+ plots. The
patterns of results for the other three simulation conditions were quite similar to those obtained in Condition
4. We are investigating the reasons for the characteristic pattern in the B results, which did not occur in our
earlier EB DIF research. Despite some anomalies, the 20 plots, considered as a group, led us to conclude
that probabilistic DIF classification was working reasonably well. We are hopeful that modification of
our methods for estimating ,u and eand will lead to even better results for the probabilistic DIF
classification approach.

Conclusions and Ideas for Future Research

The results of this study provided encouraging information about the stability of the empirical Bayes (EB)
point estimates of DIF, even in very small samples. The EB estimates tended to be closer to their target values
than did the ordinary Mantel-Haenszel (MH) statistics in terms of root mean square residual statistics (RMSRs);
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the EB statistics were also more highly correlated with the True DIF values than were the MH statistics.
As theory would predict, the superiority of the EB approach was greatest in small samples. The smallest

item sample sizes occurred for the 50 hardest simulation items when the initial group sample size was 1,000
and the reference and focal group ability distributions were one standard deviation apart. Here, item sample
sizes for the reference group ranged from 80 to 151, with a mean of 117; focal group sample sizes ranged
from 16 to 67 with a mean of 40. These sample sizes are substantially smaller than is ordinarily considered
acceptable for application of the MH method. The RMSR results for these items showed that the EB statistics
deviated from their target values by an average of .53 (in the Mantel-Haenszel DIF metric), compared to 1.25
for the MH. It is noteworthy that, in a different subset of the results, for which the MH RMSR had a median
of .53, the item sample sizes averaged about 240 per group. Roughly speaking then, the EB procedure
achieved the same stability for samples averaging 117 and 40 reference and focal group members,
respectively, as did the MH for samples averaging 240 per group.

A possible drawback of the EB DIF method is that EB estimates are not unbiased; in fact, the bias of these
estimates is greatest for the extreme parameter values. While this bias is a justifiable concern, analyses
showed the magnitude of the bias problem to be fairly small in the present study. The 25th, 50th, and 75th
percentiles of the distribution of bias values across items were similar for the EB and MH methods in the
large-sample simulation conditions, but were larger for the EB method in the small-sample conditions,
particularly when the reference and focal groups had different ability distributions. Surprisingly, however, in
three of four simulation conditions, the maximum MH bias was larger than the maximum EB bias.
Furthermore, some items with large EB bias still had smaller RMSR values for EB than for MH. For only a
very few items (six and two, respectively, in the two small-sample conditions and none in the large-sample
conditions) did the EB bias lead to EB RMSR values that exceeded MH RMSR values by more than 0.1.

Overall, the results suggest that it would be feasible to apply the EB DIF approach to adaptively
administered LSAT items. As illustrated in this report, the EB point estimates of DIF can be supplemented
with pie charts showing the probabilities associated with the A, B, and C categories of DIF severity.

We expect our future work to focus on the improvement of our estimation methodsparticularly the
procedures for estimating the variance parameter, e . Although our current estimator for e performed better
than its competitors in a supplementary simulation study, several avenues for improvement remain to be
explored. For example, a reviewer suggested that, in estimating e, MH values based on sparse data be
excluded. We are considering the application of this idea, as well as other robust estimation procedures, to
the estimation of both ke and e . A possibly related goal for future research is an investigation of ways to
refine the analysis procedures for the probabilistic DIF approach described in the section Probabilistic
DIF Classification. Although the probabilistic DIF method performs adequately, there is clearly room
for improvement.

The EB DIF method has been applied to the CAT version of the Armed Services Vocational Aptitude
Battery (CAT-ASVAB) by Defense Department data analysts (Krass & Segall, 1998) and to simulation data
by ACT researchers (Miller & Fan, 1998). Future applications by three other testing programs are under
discussion. We expect to use the results of these applications to modify and refine the EB DIF analysis
and estimation procedures. In addition, now that the testlet-based CAT simulation machinery has been
created, it can be used to investigate the performance of the EB DIF methods under alternative CAT
administration procedures.
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Appendix

TABLE Al
Parameters and parameter estimates for easy testlets

ttern number true a true br true d estimated a estimated br estimated c numer theo c1ass TESTLET
6 0.9432 -0.6478 0.5631 0.9951. -0.63321 0.1529: 1 9566. 0+ 1....

86 0.6279, -2.1791 -0.0464 0.6416 -2.1609- 0.1529' 0.11371 A 1

87 0.8759 1.6969 -0.6812 0.7955 -1.7835: 0.1529. 2.27251 G 1

95 0.5641 -0.787 0.359 0.9217 -0.7372.: 0.1529 1.1481 8+
119 0.7134. -1.0456 0.1882 0.6514. -1.10151 0.1529. 0.503: A

19 0.6827 -1.251 0.79381 0.6587 -1.2327' 0.1529. 2.08251 C+
56. 0.8348 -1.8145. -0.0106: 0.7965 -1.9324: 0.1529. -0.03441 A 2
58 0.6146 -1.1669. 0.4405: 0.6407' -1.1054: 0.1529, 1.0254; 13+ 2

.... 96 0.8107 -1.6927 -0.0001, 0.7646, -1.7847' 0.1529. -0.0003: A 2
123 1.1922 -0.3909 0.2825: 1.3766. -0.36561 0.1574- 1.1671 8+ 2
39' 0.994 -0.9019 -0.2.1.49; 1.0124, -0 8156 0.1529! -0.7756; A 3
50: 1.0053-

0.4188
-1.5142
1.2148

e---b.4295)
-0.18831

1.0474'
0.4246:

1 5177
-1 0893-

0 1529
0 1529

-1.64261
-0.2912:

C-

A

3

376.
78 0.7888' -0.8954. -0.4498, 0.8273. -0.81381 0.1529, -1.2738' 8-

132. 0.8028' -0.6477 -0.4252' 0.7995, -0.6508' 0.1529: -1,1882 9- , 3
42' 0.6431 -0.7921. -0.542. 0.6154, -0.7675. 0.15291 -1.23461 8- 4
67 0.9064, -0.383 -0.5736. 0.8794, -0.44571 0.1529- -1.6862! C- 4
891 0.7116' -1.0291 0.0264: 0.6819, -1.10431 0.1529 0.06991 A 4

101 0.6297' -0.9507 0.4192: 0.6127 -1.0478 0.1529 0.98751 A 4

148 0.4905: 1.702. -0.2092' 0.5061 .-1.62591 0.15291 -0.38961 A 4
33. 0.7957: -1.334. -0.1196, 0.8194, -1.2851 0.15291 -0.36041 A 5
57 1.1962: -0.7447 0.0627; 1.1854' -0.6574: 0.18831 0.27051 A I 5
751 0.6013! -1.152 0.4: 0.5996' -1.104 0.15291 0.90881 A 5

131' 0.477: -2.31231 0.4954, 0.4865- -2.4049+ 0.1529! 0.92151 A 5
142; 0.6505+ -1.6883+ -0.174: 0.6521 -1.77041 0.1529 -0.43391 A 5

9 0.6901+ -1.982 -0.5036! 0.6832 -1.9936; 0 1529 1.3412! 13- 1 6
45: 0.95: -0.36081 -0,45791 0.9786, -0 40671 0 0899 -1.4152. 13- 6
91 1 0458; -1.878. 1-0.4751.N 1.07321 -1.744i 0 15291 -1.92781 C- 6
94+ 0.61051 -0.6828' .0.841-4! 0.6057. -0.6271: 0.1529! -1 76481 G 6

107. 0.7519: -2.2528- 0.0354! 0.7338: -2.2518:
1.3514;

0.1529'
0.1529!

0.1046!
-0.6349!

A
A

6
78- 0.8295, -1.2986' -0.203' 0.7792.

31 1.20541
0.7348.

-0.2784
-2.3633

-0.3637,
0.191

1.1919
0.8845.

-0.3671
-2.1087:

0.1132
0.1529

-1.37081
0.55341

9-
A

7
7 -92

130 1,1924. -0.5845 -0.0124: 1.355 -0.4548. 0.2575 -0.0517: A 7

134 0.70131 -1,3807 -0.067 0.6472' -1.3582: 0.15291 -0.1783: A
4. 0.8692. -0.7873, 0.199- 0.8441 -0.8223: 0.1529+ 0 6355! A 8

51 0.6652; -0.9282- 0.49081 0.7302 -0 87431 0.1529: 1.22381 8+ 8
136. 0.5713i -0.4367- -0.0891; 0.5686; -0.4013; 0.15291 -0.1784+ A 8
140: 0.3841. -1.0101. -0.0178; 0.3619, -0.9821 0.15291 -0.025; A 8
149 0.7588: -1.1214. -0.01761 0.7863, 1.2107: 0.1-529, -0.05! A 8

13 1.2218, -2.0929' -0.4201: 1.2233' -2.2343+ 0.15291 -2 0146; C- 9
22- 1.0245; -1.4424' 0.1774; 0.9778 -1.4842; 0.1529, 0 70161 A - 9
24 0 5265 -1.3438' 0.2043: 0.5066- -1.3374+ 0.1529: 0.40671 A 9
81 0.5514' -0.43: -0.7218i 0.5096: -0.411 0.1529: -1.34181 9. 1 9

117 0.6713' -0.6045. -0.50351 0.7339' -0.6025. 0.1529: -1.17181 8- 9
12 0.4083- -0.7616- 0.219+ 0.4059 -0.7307' 0.1529- 0.3254: A 10
29 0.5071. -0.2553 0.063; 0.4036 -0.441 0.1529 0.111' A 10
64 0.5345; -0.3707 0.3029! 0.4549 -0.3837' 0.1529, 0.57521 A 10
60 0.3606- -0.5874 -0.1286' 0.3333 0.6742 0:1529, -0.16481 A 10
71 0.4313 .1.0404 0.0721 0,4026 -1.1503' 0.1529 0.1147' A 10
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TABLE A2
Parameters and parameter estimates for medium testlets

Item number true a true br true d estimated a es6mated br estimated c numer theo class testlet s
52 0.3295 -0.3978 05973; 0.3308 -0.3439; 0.1529; 0.694: A 1

20 0.9763: -0.2277. -0.36681 1.0039 -0.31631 0.12031 1.13811 8- 1

77 0.6428, -0.0355' 0.1997' 0.615 -0.009! 0.15291 0 433 U A 1- ...

69. 0.9311 -0.0702 -0.0564' 1.0595 0.043i 0.20081 -0.1681 A 1

59. 0.7793; 0.2706: -0.04651 0.8961 0.29521 0.1594: -0.10991 A 1.........-
115 0.9769: -0.0839: 0.1321 0.8896 -0.1917, 0.0874! 0.4203; A 2_....._-_-

11 0.5841, -0.2964 0.2577' 0.5981 -0.1913: 0.15291 0.529: A
66 0.8289 -0.3901 0.2698. 1.0262 -0.0661 0.2982' 0.7878. A
18........____
73

0.703
0.4435

0.2497
0.3661

-0.3381 0.6502 0.1894: 0.1529, -0.7131' A
0.1262: 0.37 0.4449: 0.15291 0.1831. A 2

5 0.9413, -0.1419 0.3238: 0.69 -0.2023; 0.0952! 1.0286; B. 3-
1 t 4 0.5936 -0.2792' -0.5829: 0.5735 -0.187. 0.1529: 1.1477, 8- 3
41 0.8343 -0.1494 0.1493: 0.9003 -0.0682: 0.1604: 0.4184: A
36 0.8662' 0.2095. 0.411: 0.9584 0.3399: 0.1859: 1.1366 9+ 3
93 1.0855- 0.5871- .0.0772, 0.9865 0.4506: 0.08841 -0.2065: A 3
80 0.5406. -0.0191. 0.7381 0.5306 0 0862; 0.15291 1 39721 B. 4

144 0.7417- 0.086. 0.1619! 0.7685 0.1018? 0.12141 0.3908! A 4
141 1.4698 0.4929! 0 03961 1 633 0.4959! 0 1465. 0.1381 A 4
122' 1.0248' 0.38351 0.7852; 1.2595 0.50731 0.197! 2.50931 C+ 4
125: 0.8785. 0.4518, 0.0045! 0.9398 0.5344: 0.17311 0.0112 A 4

-1
991 0.8535; -0.4054. -0.4591! 1.0353 -0.1811 0.24231 1.3006. 8- 5
79! 0.7993; -0.0808 -0.7611! 0.8485 .0.06211 0.17581 -1.82841 C. 5
32- 0.5297: -0.0382, 0.56721 0.4518 -0.0547' 0.1529 1.046: 8+ 5

121- 1.12991 0.0673 -0.3114: 1.3043 0.2411' 0 19571 -1.0063: e. 5
104, 0.6435' 0.1888: -0.6064: 0.7423 0.3552; 0.21651 -1.1707, . 5___
88: 1.1042' -0.1578' 0.7504, 1.0589 -0.1995. 0.12461 2.87591 C. 6

7 0.8502: -0.2773: -0.1033; 0.9546 -0.19481 0.19831 -0.2946! A 6
103 0.4724' -0.0795- 0.1157, 0.4325 -0.0023: 0.15291 -0.18741 A 1 6
49 0.8738: 0.1718' -0.4868: 0.8426 0.1432 0.1117' -1.2148i 9- 6
83- 1.2568' 0.4927 -0.2019: 1.0806 0.4907' 0.1197 -0.5994 A 6
26. 1.2642 -0.3638 0.0663: 1,2907 -0.3484 0.14981 0.28151 A 7
16 0.646: -0.0527: -0.09731 0.6279 -0.0294i 0.1529! -0.20781 A 7
28- 0.6131 0.1384- -0.0558: 0.6425 0.0763: 0.15291 -0.11051 A 7
21 0.8277: 0.1466 0.5112'. 0.8285 0.1972! 0.1607! 1.3901 B. 7

14T 0.7482' 0.4239: -0.7828i 0.7417 0.4646; 0.16381 -1.5393: C. 7
113: 0.991' -0.3734. o.4165i 0.9744 -0.2733; 0.1625 1.4579 8+ 8
135' 1.0399: -0.1754: 0.63611 0.9927' -0.22641 0.1215; 2.2904! C. 8

84 1.1017. 0.2681. -0.3372' 1.0846 0.2261, 0.1025: -0.987! A 8
25 1.4613' 0.2623 0.0769; 1.4257 0.2729- 6.1284: 0.3015; A a
34 1.4901 0.4412' 0.379. 1.5596 0.4511 0.1325! 1.4873: 8+ 8

116 2.1779. -0.3198- 0.3066: 2 -0.3417' 0.12231 2.169: C. 9
17 0.5619' -0.1782' -0.3579: 0.5675 -0.1677, 0.15291 -0.67151 A 9

145 1.1593. -0.0126 0.2744 1.1583 0.0176! 0.1462! 1.0152 8+ 9
47 1 1491 0.1298. 0.2029 1 058 0.2011 0.1655: 0.70831 A 9
40 0.980 i 0.564 0.059' 0.9205 0.5678- 0 1243 0.15351 A 9

139 0.7989- 0.0149: -0.2377' 0.704 -0 0526: 0.15291 -0.59581 A 10
23 0.7046 -0.0929 0.345: 0.829 -0.0392: 0.1791 0.8311 A 10
30. 0.4712 0.1067' -0.1424. 0.4226 0.1253; 0.15291 -0 2218 A 10

106: 0.9364 0.2118: 0.7709 1.0755 0.2998- 0 21151 2.3682' C. 10
90 0.4513 0.4675 -0.0637 0 5223 0.5156: 0 1529 -0.0914: A 10
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TABLE A3
Parameters and parameter estimates for hard testlets

Item number true a true br true d esernaled a - estimated br !estimated c ,numer theo 'class testlet e
108 0.7608 0.4004: 0.0764: 0.8321 0.5821 0.21131 0.1741: A 1------

54 0.656! 0.6412 -0.0849! 0.6132! 0.71021 0.15291 -0.159! A 1

150. 0.7828. 0.6618' -0.16781 0.8476' 0.79011 0.17461 -0.3485i A 1

72 0.79731 0.8877 -0.36611 0.7872 0.91061 0.1275! -0.6791' A 1

111: 0.3454. 1.9564 -0.03221 0.355. 2.01951 0.15291 -0.0296 A
_

1

103 1.057 0.5118: -0.08981 1.1881 0.6224: 0.1975; -0.2434: A 2

53 0.9154
0.5156

0.7982
1.1304

0.1511: 1.2344 0.83521 0.1666, 0.3494 A 2

65 -0.0546' 0.5871. 1.3404. 0.18531 -0.07671 A 2

27 0.861 2.0069 -0.4846. 1.1049. 2.0401, 0.18431 .0.447, A 2

85 0.7161 2.0542 ) i 0.4642> 0.9135 2.1676, 0.1971 0.583; A 2

68 0.904 07631 0.1414. 0.9599' 0.6371 0.1541 0 3449 A 3
37" 0.7951 1.097 -0.091,1' 0.7586. 1.11331 0.13771 -0.16371 A 3

98 0.6609 2.6982 0.4937.:`. 0.6205 2.4091 0.11581 0.438! A 3

15. 0.6651 2.8122 0.2804; 0.5981 3.23141 0.14441 0 215al A 3

t 43' 0.8288: 2.939: -0.19091 0.4647 3 629 0 12361 -0 0905 A 3

3: 0.9596, 0.7093' -0.09691 0 8774 0.71 0.14931 -0.2271 A 4

137 0.8378: 1.0615 -(0.52/57) 0,916: 1 09951 0.13621 1.10941 8+ 4

1 (1 0.774: 1.0737' 0.08781 0.63841 1.19381 0.155! 0.1632 A 4

127, 0.368' 1.2141 0.07611 0.6866! 1.60341 0.29941 0.0834' A 4

82 0.8466, 2.1516: 0.0121 0.9521 2.2096: 0.15081 0.012! A 4

129: 0.7817 0.9651. -0.35931 0.7785 0.81851 0.1021 -0.63991 A 1 5

110; 0.8756: 0.8802. 0-20_.',96155.) 0.8711 09257! 0.12481 2 4035 C+. 1 5

53! 0.71591 1.4123' -0.11461 0.62531 1,30561 0.1094 .0.1711 A 1 5

74: 0.726: 2.1769' 0.0661; 0.7171' 2.1504! 0.14521 0.0591 A 1 5

55. 0.6071 - 2.2799 -0.6038! 0.4305: 2.66961 0.12311 -0.51031 A 5

138. 0.5926' 0.7947 2456-)
6-.153-,...L...05:

0.5213. 0.59291 0.06891 0.1273) A 6

97 0.4772, 0.6487 0.4386' 0.63781 0.15291 0.0451 A 6

146' 1.00071 1.0448' 0.32191 1.1407' 1 04431 0.16561 0 72781 A 6

129. 0.4451 1.4136 -0.4984: 0.4142 I.65S1 0.15291 -0.5661 A 6

102 1.3882. 1.7001 -0.07681 1.286. 1.83071 0.1535! -0.09651 A 1 6

120. 0.7069 0.4557. 0.9464. 0.7353. 0.56871 0.16591 2.18951 C+ 7

70 0.5047. 0.8107' 0.3793: 0.4204: 0 9719: 0.15291 0.58671 A 7

I 0.4785 1.0151 -0.26211 0.4491. 1 10391 0.15291 -0.3511 A 7 .

43. 1.584. 1.3512' 0.37981 1.6542' 1 40921 0.15081 0.84551 A 7

14, 0.6469 1.3696. -0.3507, 0.5906: 1.51641 0.14531 -0.48981 A 7

118 0.5175 0.8228 -0.1571 0.5595: 0.87981 0.15291 -0.2347: A 8

35 1,0353' 0.8614: -0.2288! 1.1757 0.89441 0.17361 -0.5014; A 8

124 0.8031 0.9034: -0.2354' 0.9872' 1.01481 _0.18461 -0.44751 A 8

62 0.5841 0.918 -0.2285. 0.6826 1.13761 0.19521- -0.35971 A a
4 4 0.4555- 1.1998 .0.383 0.5579 1.61231 0.22091 -0.4702, A a

126. 0.664' 1.0294 -0.0342, 0.6426. 1 0026! 0.13131 -0.0581 A 9

109
1 33

0.8492 1.1652 -0.3038' 0.8996 1,09831 0.1551! -0.5152! A 9

0.718 1.0862' 0.3229: 0.7082 1.3307' 0.17581 0.5976' A 9

105 1.0927 1 5521 0.5524' 1.6201 1.5064: 0.16171 1.0291 8+ 9

46 0.7271 1.7441' -0.13531 0.7913 1.80581 0.18751 -0.171! A 9

61' 0.9598' 0.7243: 0.01451 1 0108: 0.7992! 0.1827, 0.03461 A 10
38 0.7324 0.6478 -0.5742' 0.7481: 0.81171 0.1807! 1.0709! 8- 1 0

1 1 2 0.6218' 1.0758 .0.01251 0 6951 1.13041 0 1599 -0.0202 A 10
2 1.1578, 1.2702' -0.15251 1.2583 1.34941 0.16181 -0.2731 A 10

4 8. 0.5315. 2.8936. 0.219' 0.8348' 2.49361 0.18161 0.1728. A 10
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